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ABSTRACT 

For p > 3 a prime, we compute the Q-rational cuspidal subgroup C(p r) 
of the Jacobian Jo(p") of the modular curve X0(pr). This result is then 

applied to determine the component group Op- of the N~ron model of 

J0(p r) over Z~. This extends results of Lorenzini [7]. We also study the 

action of the Atkin-Lehner involution on the p-primary part of C(pr), as 

well as the effect of degeneracy maps on the component groups. 

1. I n t r o d u c t i o n  

Let p be a prime number, and for any positive integer r, let Xo(p r) denote the 

classical modular curve over Q. Let Jo(p r) denote the Jacobian variety of Xo(f), 
also defined over Q. 

Let C(p ~) denote the Q-rational cuspidal subgroup of Jo(f). This is the 

subgroup of Q-rational points of J 0 ( f )  generated by the divisor classes of divisors 

of degree 0 on Xo(f), whose components are cusps. Manin [8] has shown that  

the classes of all such cuspidal divisors are of finite order, so C(p ~) is a finite 

abelian group. When r = 1, the group C(p) was computed by Ogg [10]. For any 

prime p, C(p) is cyclic of order p-1 (p-l,12)" 

For p > 5, let a and b be defined as 

def p -  1 a -- and b de___f p + 1 
(p -- 1, 12) (p + 1, 12)" 
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Then (a, b) = 1 and ab = P241" 

For arbitrary r, but with the constraint p ~ 11 mod 12, Lorenzini [7] showed 

that the prime-to-2p part C ( / )  (2p) of C ( / )  is isomorphic to the prime-to-2 part 

of ( z / a z )  r • (Z/bZ) ~-~. 

In this article, we compute C ( / )  entirely for all primes p _> 3, using a rather 

elementary method of relating cuspidal divisors with modular functions. 

For a finite abelian group G and an integer n, let G,  denote the n-primary 

part of G and let G (") denote the prime-to-n part of G, so that G = G ,  $ G("). 

We also let w = wp. denote the Atkin-Lehner involution on J o ( f )  (see sub- 

section 3.2 for definition). Let C ( / )  + be the image of ( w + l ) :  C(/)~,  ~ C ( / ) p ,  

and let C ( f ) ~  be the image of (w - 1): C ( f ) p  --. C ( f ) p .  We prove in this 

article: 

THEOREM 1: Let p > 5 be a prime and let r >>_ 1 be a positive integer. 

(i) The groups C ( / )  + and C(p")~" are given as follows: 

�9 c(v)~ + = c(p~); = c~); = c~2); ~ o 

�9 c(p~)~ + = o c(f); ~ Z/p~Z 

�9 i f r  >_ 4, r even, 

C(p~) + ~- Z / p ] Z  x Z / p i + l z  x . . .  x Z /p~-az  x Z /p r -2Z  
r--2 

= I I  z /p ,z ,  

C(p~);  ~ Z /p ~+ Iz  x Z /p[+2Z x . . .  x Z /p r -2Z  x Z/p~-*Z 

r--1 

= l-I z /v , z ,  
i=~+l 

�9 i f r  >_ 4, r odd, 

co~')~ ~- Z/p~Z x Z/p~Z x . . .  x z / f - z z  x z / f -2z  
r- -2  

= H z/p,z,  

c(f ) ;  ~_ Z/p~Z x z / p ~ z  x . . .  • z / f - 2 z  x z / p ' - ~ z  
r - - |  

= YI z/p,z. 
i=r~ 
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(ii) The Q-rational cuspidal subgroup C(p ~) Of Jo(p ~) is given by: 

c(v~)(p) _~ ( z / a z )  ~ • ( z / b z )  ~-1, 
c (vr )p  = c(p~)~ + • c ( v % - .  

After some preliminary discussion in Section 2, we prove Theorem l(ii) in 

Section 3. The proof of Theorem l(i) follows in Section 4. The proof for the case 

p = 3 is similar, so we leave it to the reader. We simply state the results here. 

THEOREM 2: The Q-rational cuspidal subgroup C(3 ~) of Jo(3 ~) is given by: 

�9 c ( 3 )  = c ( 3  2) = o, 

�9 C(3 3) ~- Z/3Z,  

�9 i f r  >_ 4, r even, 

C(3 r) __Z/3~-Iz  • Z/3~Z • Z/3~Z x . . .  

• Z /3r -3Z x Z/3r -3Z • Z /3 r -2Z  

r--3 r--2 

= H Z / 3 ' Z x  H Z/3 'Z,  

�9 ifr >_ 4, r odd, 

C(3r ) . - ,  .-1 _~ Z / 3 T Z  • Z / 3 T Z  x . . .  X Z/3r -3Z • Z /3r -3Z • Z /3 r -2Z  

r--3 r--2 

= 1-I z /3 'z •  1-[ z/3'z. 
~=-~-~ ~=-~-~ 

We have not been able to determine completely C(2 r) (r > 1). The reason is 

that we are not sure if all possible relations governing the generators have been 

found (cf. subsection 2.2). 

Regarding Jo(p r) as an abelian variety over Qp, let Jo(p r) denote the N~ron 

model of Jo(p ~) over Zp, let J0(p~), denote the special fibre of Jo(p~), and let 

q)p~ denote the component group of J0(p~),. 

In [7], Lorenzini showed that, for p _> 5 a prime, the reduction map lr~: C(p~)(6) 
,~(6) 

-~ =p. is surjective. He also showed that 

(i) @p. contains a subgroup isomorphic to Z/aZ x (Z/bZ)~-l;  

(ii) when p ~ 11 rood 12, r _~ Z/aZ x (Z/bZ)~-I; 
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p 2s2 i f  r = 2s + 1, 
(iii) when p ~ 11 mod 12, I(r = p2,(,-x) if r = 2s. 

As Theorem 1 gives a description for C(p~), we use Theorem 1 and surjectivity of 

~r~ to compute &(p6P) for all primes p _> 5, and to give an upper bound for [(~p~)pl 

whenp - l l m o d 1 2 .  

THEOREM 3: Let p _> 5 be a prime. Then 

(i) r is isomorphic to the prime-to-6p part of (Z/aZ)  x (Z/bZ)~-l;  
p8(38-1)  r - -  2s + 1, 

(ii) it" p - 11 mod 12, I(r --- r = 2 s .  

In particular, (r = (r )p = O. 

We note that Theorem 3(ii) follows immediately as a corollary of Theorem 1 

and the surjectivity of ~rr: C(pr) (6) --~ r 

Theorem 1.4 of [7] furnishes us with the group structure of (r and (~p.)~- 

(defined to be the images of (w + 1) and (w - 1), respectively, on (r when 

p - 1 mod 12. If we are able to compute (r explicitly for all primes p _> 5, it 

would be interesting to understand how the kernel of the map r~: C(p ~) ~ Cp. 

reduces in the connected component of the N~ron model. 

Let Jp. denote the torsion subgroup of J0(pr)(Q). With Theorem 1 at hand, 

an argument similar to the one in [7], 4.8 and 4.9 gives a complete description of 

j(6v) for all primes p _> 5 (el. (1) below). 

THEOREM 4: Let p _> 5 be a prime, and let t ~ 2, 3, p be another prime. Then 

(Jp')t = C(P~)l ~- t-primary part of (Z/aZ) ~ x (Z/bZ) ~-1. 

If r = 2, the statement also holds for t = 3. 

Proof: The proof of this fact is essentially contained in [7], 4.8 and 4.9, so we 

only give a sketch. Theorem 2.3 of [7] shows that the reduction map rr:  C(p~)t ---* 

(r is surjective for such t. 

Given u E (Jp-)t, there exists a c E C(p~)t such that  ~r~(u) = Try(c). By [7] 

4.s, u �9 C(p~)t. 

When r = 2 and ~ = 3, the map r~ is also surjective (Lemma 4.2 of [7]). | 

Theorem 4 may be regarded as a generalisation of [7], Theorem 4.6, which 

states that  for p > 5, p ~ 11 rood 12, we have 

(1) J(~P) = C(pr) (2p) -~ prime-to-2 part of (Z/aZ) r x (Z/bZ) ~-1. 
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2. Relationship between modular functions and cuspidal divisors 

2.1 THE DEDEKIND q-FUNCTIONS AND CUSPIDAL DIVISORS. Let N be a 

positive integer, and let 5 denote a positive divisor of N. Let r = (r~) be a 

family of rational numbers r~ E Q indexed by all the positive divisors 5 of N. 

Let 

(2) gr = H 

be made up from the Dedekind ~?-functions, where ~?$(z) ~f  ~t(Sz). As ~/is a 

complex function, we regard an nth root ~?l/n of ~/as a power series in exp(2riz) 

with rational coefficients (cf. [11], Section 4). The function gr in (2) may be 

regarded as a holomorphic function on the Poincar~ upper half-plane. 

The following proposition is well-known: 

PROPOSITION 1: The function gr in (2) is a modular function on the modular 

curve Xo(N), defined over Q, i.e., gr E Q(Xo(N)) ,  if and only if the following 

conditions are satisfied: 

(0) a11 the r~ are rational integers; 

(1) ~ 1 ~  v r~. 5 -- 0 rood 24; 

(2) E~ll v r~- N _ 0 mod 24; 

(3) ~ l g  r~ ---- 0; 

(4) I-I~IN 5 TM is the square of a rational number. 

Cf. [3], Proposition 3.2.1, p. 32, Remarque, or [4], Proposition 1. 

As representatives of the cusps of Zo(g) ,  we use as in [10] the vectors (~), 

where diN, d > 0 and (x, d) = 1 with x taken modulo (d, N/d). We say that such 

a cusp (d) is o f  level d, and it is defined over Q(#m), where m = (d, N/d) ([10], 

Section 1). The Galois group Gal(Q(#,~)/Q) permutes all the cusps of level d. 

Let (Pd) denote the divisor on Xo(N) defined as the sum of all the cusps of level 

d (each with multiplicity one). Clearly (Pd) is invariant under GaI(Q/Q).  
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It is easy to see that the Q-rational cuspidal subgroup C(N) of Jo(N) is 

generated by divisor classes coming from divisors of the kind 

r N/d))P1 - (Pd) 

as d runs through the positive divisors of N. Here r is the Euler totient function. 

For divisors ~f and d of N, let 

aN(d, 5) de_f Y (d, 6) 2 
(d,N/d) d~ 

Let r = (r6) be a family of integers satisfying the conditions in Proposition 1. 

Then the divisor of gr is supported at the cusps, and ([3], Proposition 3.2.8) 

(gr) ---- Z b r ( d ) "  (Pd), 
diN 

where 

(3) 

Note also that 

br(d) = 1 ~ aN(d, 6).rs.  
5IN 

deg((gr)) = Z br(d) �9 r N/d)) = O. 
din 

Conversely, if D = )-~dlN rod(Pal) is a cuspidal divisor of degree 0, then there 

exists a modular function gr of the type described in Proposition 1 such that the 

divisor (gr) is an integral multiple of D (loc. cir., Proposition 3.2.10). 

The above discussion and loc. cit., Propositions 3.2.8 and 3.2.10, show that 

we have a map A from the set 

~,,ilN 5IN 

to the set 

(diN 
md E q and Zmdr = 0 } .  

This map is defined by 

with ~61N r~ = 0 and br(d) as in (3). 

r ~ E Q ,  br(d) E Q, 
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PROPOSITION 2: The map A is bijective. 

Proof: Let t denote the number of positive divisors of N, and let 1 -- 51 < 52 < 

�9 -. < 5~ = N be all the positive divisors of N. Then $1 may be identified with 

{(') / (4)  . e Q t :  ~ r ~ ,  - -  o . 

i=l 
T6~ 

Similarly, $2 has the natural identification with 

( s )  �9 e Or:  ~ m ~ , r  = o . 
i=1 

m6t 

With these identifications, A may be written as a t x t matrix such that 

m61 

Indeed, given any " E $2, there exists an integer e such that em~ E Z 

m6t 

for all i = 1 . . . .  , t. Then there exists gr = 

in Proposition 1 such that 

r61 ) 
A �9 

T6t 
Therefore, 

I m61 
ke  �9 

m6t 

I r61 1 
r6~ 

E $1 of the type described 

, for some k E Z. 

(r,,ke) (m,) 
h o ~ �9 o 

r~, / ke m~ 

This shows that A is surjective. Injectivity of A follows since $1 and $2 are 

Q-vector spaces of the same dimension. | 
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2.2 THE GENERAL STRATEGY. For a general level N and a divisor 5i of N 

(notation as in above subsection), let 

C~_, = r NISi) )P1 - (P~,). 

Then it is clear that the divisor classes Ci (1 < i < t - 1) generate C(N).  

To compute C(N),  we first find the order of each Ci. To do this, we first 

compute A-1Ci C $1, then find the smallest positive integer k such that the 

entries of kA-1Ci satisfy all the conditions of Proposition 1. This k is then the 

order of C~ (cf. [11], Section 4). 

Next we establish relations among the generators Ci of C(N).  We note that  

a relation ~ A~Ci = 0 exists if and only if A-I(~-~ A~Ci) satisfies the conditions 

of Proposition 1. In principle, relations can be established for any given N. 

However, in general, it can be difficult to determine whether all the possible 

relations have been found. This is precisely the problem that hindered us from 

determining C(2 r) completely. In this paper, we find all the possible relations 

among the generators of C(N)  for all N = p~, where p _> 5 is a prime. 

Having found all the generators of C(N)  and all the possible relations among 

the generators, the group C(N)  is practically found. 

2.3 THE CASE N = pr. We specialise now to the case N = pr, where p is a 

prime. Then we may write 5i = pi-1, 1 < i < r +  1, and 5j = pj-1,  1 _< j _< r +  1. 

Consequently, 

-11 
1 pr (pi-1, pj--1)2 

=24 (pi- l ,pr- i+l)  pi+j-2 

1 1 (pi-l,pj-1)2pr-j+l 
- 2 4  (p2(i-1) ,pr) 

Let M = (m~j) be the (r + l) x ( r + l )  matr/x with mij = LEMMA 1: 

(pi - l ,p j -1)2.  Then we have 

M = BCD,  

1 i f j>_ i ,  
dij = 0 otherwise. 

1 i f i  = j  = 1, 
1 i f  j <_ i, cij = p2(i-1) _p2(~-2) i f  i = j >_ 2, and 

where bq = 0 otherwise, 0 otherwise, 
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The verification of the lemma is straight-forward, so we leave it to the reader. 

Now let A = (aij) be the matrix 

1 if i = j, (p2(i-l),p.) 
aij = 0 otherwise, 

and let E = (eij) be the matrix 

pr- i+l  if i = j, 
eij ---- 0 o t h e r w i s e .  

Then we have 

A =  ~ A B C D E .  

Consequently, 

A -1 = 24E-ID-1C-1B-1A-1" 

Writing A -1 = (a~j), B -1 = (b~j) etc., we have 

a:j = { (p2(i-1),p~)0 otherwise,ifi= j, { 1 if i =  j,  b~j= - 1  i f i = j + l ,  
0 otherwise, 

1 i f i = j = l ,  f 1 i f i = j ,  
C~j = 1 if i = j >_ 2, ~ = / p2(,-1)_p2(i-2) dij - 1  i f j  = i + 1, 

0 otherwise, 0 otherwise, 

e~'J, = ~ p i - l -~  if i = j,  
t 0 otherwise. 

PROPOSITION 3: The matrix A -I  = (X~j) is given by 

24 / !  

AiJ - p.(p2 _ 1) 

where 
p2 i f i = j = l o r r + l ,  

p 2 + l  i f2<_i=j<_r ,  
~J = - p  if ]i - j[ = 1, 

0 i f [ i - j [  >_ 2. 
From our discussion in subsection 2.1, it follows that a rational euspidal divisor 

P of degree 0 (with coefficients in Z) actually comes from a modular function 

on Xo(p ~) precisely when the entries of A - I P  (with P identified with a column 

vector through (5)) satisfy the conditions of Proposition 1. For this reason, the 

order of the class of a rational cuspidal divisor P is the smallest positive integer 

k such that the entries of k(A-1p)  satisfy the conditions of Proposition 1. 
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3. P r o o f  o f  T h e o r e m  l ( i i )  

3.1 THE CASE r = 2. From this section, we assume further that p _> 5. 

When r = 2, the matrix A -1 is 

A _ I _  24 ( p2 
p2(p2 _ 1) - P  \ 0 

] 

_ 24 { p 
p(p~ - 1) \ - 1  

0 

_p2 0 ) 

p(p2_p+21) -pP 

-p 0 ) 
p2 + 1 - 1  �9 

-p p 

The Q-rational cuspidal subgroup C(p 2) is clearly generated by divisor classes of 

the following divisors: 

C1 ~ ( p -  1)P1 - (Pp), 

c2 %fPl - Pp~. 

To completely describe the group structure of C(p2), it suffices to determine the 

orders of the divisor classes C1 and C2 of C1 and C2, and find all the relations 

between them. 

To determine the orders of C1 and C2, we first compute 

(6) 

24 / p -P  
A-1Cl=p(p2_l) [k -1  p 2 + l  

0 - p  

- 24 ( ~ ) 
p2---~ - ( P  + 1) , 

1 

O B 

and 

(7) A - 1 C 2 -  
p o ) ( 1 ) 2 4 ( 1 )  

p(p2_l) -1  p 2 + l  -1  0 p 2 _ 1  0 . 
0 - p  p -1  -1  

Using the criteria in Proposition 1, it is easy to see that the smallest power of 

A-1C1 that is a modular function on Xo(p 2) is (A-1C1)(P2-1)/24. Therefore the 

order of C1 is (p2 _ 1)/24. Similarly, we can show that the order of C2 is also 
(p2 _ 1)/24. 

Let ~ denote a prime divisor of (p2 _ 1)/24 -- ab. We may write (p2 _ 1)/24 -- 

~t[ ,  where ~ ~ [. For i = 1, 2, let C~,~ = [C~. Then C(p 2) is generated by C1,~ and 
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C2,e, where g runs through all the prime divisors of (p2 _ 1)/24. Furthermore, 

for each g, C~,e (i --= 1, 2) has order e TM. 

To determine the relations between the generators C1 and C2 of C(p2), it 

suffices to find the relations (if any) between Ca,e and C2,e, for each prime g. 

Suppose that AeCI,e+#eC2,e = O, where At,/*e are integers such that 0 _< At, #e _< 

g~t _ 1. This is true if and only if A-I(AeCI,e + #eC2,e) is a modular function on 

Xo(p2). From (6) and (7), we have 

(8) A-l(AeCl,t  + #eC2,e) = ~-; -Ae(p + 1) . 
Ae - #e 

For (8) to represent a modular function on Xo(p2), the conditions in Proposition 

1 need to be satisfied. Let re(x) denote the valuation of x at g, i.e., gv,(x) is the 

exact power of e dividing x. 

Condition (0) of Proposition 1 applied to the exponent of %2 implies that 

vt(At - #e) ~ re, i.e., Ae=#e.  

If g ~ 2 divides a, then (g,p + 1) = 1, and applying condition (0) to the 

exponent of ~p yields 

ve(Ae(p+l))  Ere,  i.e., A t = 0 .  

If g = 2 divides a, then g exactly divides p + 1. Condition (4) implies that 

v2(Ae(p + 1)) > r2 + 1, 

thus giving 

v2(Ae) _> r2, i.e., At = O. 

Summarising the above, we conclude that there is no relation between Cl,e and 

C~,e if g is a prime divisor of a. 

If g divides b, then vt(p + 1) >__ re. Applying condition (0) of Proposition 1 to 

the exponent of ~? gives 

ve(.~tp + #e) ?> re, 

which gives 

v t ( -At  + #e) >_ re, i.e., At = #e. 
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It is easy to see that conditions (1) through (4) are then automatically satisfied. 

Therefore, when/~ is a prime divisor of b, we have CI,e + C2,t = 0. 

Considering all the generators and relations in C(p2), we obtain 

C(p 2) _~ (Z/aZ)  2 • Z/bZ .  

3.2 THE CASE r >_ 3. For r _> 3, let Ci (1 

cuspidal divisors (of degree 0) 

< i < r) denote the rational 

Ci d~=f r _ (pp,). 

Clearly, C(p") is generated by the divisor classes Ci of Ci, for 1 < i < r. 

We first determine the orders of the classes Ci. Taking A-1 as in Proposition 

3, it is easy to verify the following computations: 

p3 

_p2 (p + 1) 
24 p2 

A - I C 1  - 

p~(p~ - 1) o 

p 3 ( v -  1) 
p2 

_p2(p2 + 1) 

A _ I c  2 _ 24 p3 
pr(p2 _ 1) 0 

0 

(r > 4) or 

p2(p_ 1) ) 
24 p 

pa(p~ _ 1) _p(p2 + 1) 
p2 

(r = 3), 
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A - 1 C /  - 

A - l e t  - 

24 

p (p2 _ 1) 

24 
p~(p2 _ 1) 

pt(i)+a (p _ 1) 
_pt(i) (p _ 1) 

0 

0 
pt(i)+l 

_pt(i) (p2 + 1) 
pt(i)+l 

0 

0 
p2 ' 

- p  
0 

0 
P 

Using Proposition 1, we may check that 

�9 the order of C1 is p~-2ab, 

, 2 < i < r ,  t(i) = min(i, r - i), 

�9 the order of C2 is p~-2ab (r >_ 4), or p2ab (r = 3), 

�9 the order of Ci is p~-t(~)ab (2 < i < r), 

* the order of C---~ is p"-lab. 

As an example, we compute the order of Ci (2 < i < r). Let the order of Ci 

be denoted by d. Then d is the smallest positive integer such that the entries of 

dA-1Ci = A-I(dC~) satisfy the conditions (0) through (4) of Proposition 1. 

Condition (0) shows that 

d 
(9) p~-t(Oab E Z, i.e., d E p~-t(~)abZ. 

It is easy to see that, for any d E Z, conditions (1), (2) and (3) are satisfied�9 

Condition (4) is equivalent to 

d 
p~_t(~)ab[-~v- 1) - i(p 2 + 1)] E 2Z i f r i s  odd, 

(10) d 
p~_t(Oab[-(p-  1) + 2ip] E 2Z if r is even. 
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Clearly, since p >_ 5 is odd, (10) is true whenever (9) is satisfied. 

It follows therefore that the order of Ci (2 < i < r) is pr-t(Oab. 

Next we determine the relations among the generators Ci of C(pr). Mimicking 

subsection 3.1, for each prime divisor g of (p2 _ 1)/24 = ab, we write (p2 _ 1)/24 = 

g t [  (g X~), and set 

C,,e =P~-2gC1, 

C2,t =pr-2gC2 (r >_ 4), or p2iC2 (r = 3), 

Ci,t =p~-'(O~Ci (2 < i < r), 

Cr,t =p~- ' iC~. 

Similarly, we set 

Ci,p=abCi ( l < i < r ) .  

We will establish the relations among the generators Ci of C(p r) at each prime, 

and then combine the information thus obtained. First, we determine the 

relations among the Ci.p (1 < i < r). 

Let vx(ph+l), vp(ph+X): Xo(p h+t) --* Xo(P h) be the two degeneracy maps from 

Xo(p h+t) to Xo(ph). Recall that the points on Yo(ph+l)(C) are parametrised by 

isomorphism classes [E, G], where E is an elliptic curve over {2 and G is a cyclic 

subgroup of order ph+l. Then, on Yo(ph+X)(C), we have the following modular 

interpretation: 

vl(ph+l)([E, G]) =[E, Gph], 

vp(p h+x )([E, G]) =[E / Vp, G / Gpl, 

where Gp and Gph denote the unique subgroups of G of orders p and ph 

respectively. 

For 0 < i < h +  1, and x such that (z,p) = 1 and x taken modulo (pi,ph+X-i), 
~g 

we recall that (with (p,) representing the cusps on X0(Ph+l)) 

(x) vl(P = 

(11) 

(;,) 
x rood ph-i ,, ) 

0 < i < h/2. This point is ramified. 

h/2 < i <_ h 

i = h + l .  



Vol. 99, 1997 Q-RATIONAL CUSPIDAL SUBGROUP 43 

(x) 
(12) vp(p h+l) pi = 

0 )  i = 0  
1 

pi-1 1 - - < i < h + 1  

h 
( x ) -~ + l < i < h + 

This point is ramified. 

The degeneracy maps Vl, Vla,..., Vpr-h'- X0(p r) --} Xo(p h) in the introduction may 

be described by 

Vl ~-- Vl(p h+l)  0 ' ' '  0 Vl(p r - l )  O Vl(pr), 

Via, = Vl (p h + l ) o . . . o  Vl(.p r - i )  O vp (p r - i  + l ) 0 . . .  0 vp (pr ) , 
Vpr-h = Vp(p h+l) 0 ' ' ' 0  Vp(p r - l )  0 Vp(pr). 

O < i < r - h ,  

With h = 2, the map Vl: X0(P r) --} Z0(p  2) induces, via Pic functoriality, a map 

*" Jo(p 2) ~ Jo(p ~) on the Jacobian varieties. Using (11) and (12), we can show V 1 �9 

that 
[~1 ~-2  

v~(P, - Pp2) = Ep ' -2 i -Ci  + E C~ + C,-1 + C--~, 
i=2 i=[~1+1 

where [x] denotes the greatest integer less than or equal to x. 

Observing that ab(P1 - Pp~) = 0 in Jo(p 2) (subsection 2.1), we obtain 

(13) 
[~] r--2 

-~- ~ p r - 2 i - ' C i ,  p -~- ~_~ C-~,p -t- C%-l,p ~- C'-~ ,v . 0 
i=2 i=[~]+l 

This shows that C~,p is a Z-linear combination of Ci,v (2 < i < r - 1). 

Let w = wv. be the Atkin-Lehner involution on Xo(p~). Recall that the 

restriction of w to Yo( / ) (C)  has the following modular interpretation: 

w([E, G]) = [E/G, (E~ ~] + G)/G], 

where E is an elliptic curve over C, G is a cyclic subgroup of E of o r d e r / ,  and 

E[p ~] is the group of p~-torsion points in E. 
X We also recall that, if (r  is a cusp on X0(p ~) (where (x,p) = 1 and x is taken 

modulo ( p i , / - i ) ) ,  then 

(x) (x) w pi pr- i  �9 
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Applying w to (13), we obtain 

p i,p + Cl,p = - p Cr,p. 
~=2 i=[~1+1 

This is shows that  Clm is a Z-linear combination of Ci,p for 2 < i < r - 2 and 

i = r. Together with the conclusion after (13), we have shown that  the p-primary 

part C(pr)p of C(p ~) is generated by C~,p (2 < i < r - 1). 

If r = 3, then C(p3)p is generated by C2,p, hence 

( 1 4 )  c(p )p z / p 2 z .  

For r _> 4, the generators C~,p (2 < i < r -  1) may be subject to some relations. 

To find the relations among all the C~,p (2 < i < r - 1), we suppose that  

(15) A2C2,p + . . -  + A~_IC~-I,p = 0, 

w h e r e 0 < A 2 _ < p ~ - 2 - 1 a n d 0 < A { < p ' - t ( i ) - i  ( 3 < i < r - 1 ) .  

Let ~ _> 3 be the largest integer such that A~ # 0 in (15). 

Considering the ((~ + 2)nd row in the vector representing 

h-l(-~2C2,p + " "  + )~aCc,,p), 

and applying Proposition 1, we see that (15) implies 

vp(Aa) ~ r - t((~) - i .  

Since the order of Ca,p is pr-t(a), we have 

= r - - 1.  

Considering next the ( a+ l ) s t  row in the same vector, and again using Proposition 

1, we get 

vp(A~_l/(~-1)+1 - A~/(~)(p 2 + 1)) >_ r. 

Since vp(A,~pt('~)(p 2 + 1)) = r - 1, it follows that 

%(A~_lp t(r = r - 1, 

which is equivalent to 

{ 2 ( ( ~ - 1 ) - ( ~ - 1  i f ~ - l > ~ ,  
vp(A~-l )=  r - a - 1  if a - l _ <  ~. 
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Continuing this process by next considering the a th  row in the vector 

A-I(A2C2,p -b . .-  q- AaCa,p), and so on till the 4th row, we may deduce that, 

f o r 2 < i < a ,  
= [  2 J - a - 1  i f i > ~ ,  

Vp(~i) 
t r - a - 1  i f / <  -~ 

- -  2 "  

Now consider the 3rd row of the vector A -1 (A2C2,p + . . .  + A~C~,p). The entry is 

p~[--A2p2(p  2 + 1) -k A3pt(3)+l]. 

It is straight-forward to verify that 

V p ( A 3 p  t ( 3 ) + l )  : r - -  ol q- 3, 

and 

Therefore, 

Vp(A2p2(p 2 + 1)) = r -  a + l .  

vp(-A2p2(p 2 + 1) + A3p t(3)+1) < r, 

which contradicts condition (0) of Proposition 1. 

We therefore conclude that A2 . . . . .  A~-I = 0 in (15), which means that the 

generators Ci,p (2 < i < r - 1) are independent of one another. Consequently, 

(16) C(p")p ~ Z/p~-2Z x H Z/P~-t(i)Z' for r _> 4. 
2<i<r 

Remark. We observe that for p # 2 a prime, it is clear that 

c ( p %  = • c ( p ' ) ; ,  

with C(p~) + and C(p~)p as defined in the introduction. Therefore, the group 

structure of C(p~)p will become evident once the group structures of C(p~) + and 

C(p~)p are determined (in Section 4). 

Now we compute the l-primary part C(p~)e of C(p~), for ~ dividing 

(p2 _ 1)/24 = ab. Clearly, C(p~)~ is generated by Ci,~ (1 < i < r). Suppose 

that 

(17) ~1Ci,~ "~ �9 �9 �9 "~- ~trVr, g = 0. 

Note that  each #i is unique up to modulo g~'. 
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By considering the (r  + 1)st row in the vector A-l( /*lCl ,e  + - - -  +/**C~,t), and 

applying Proposi t ion 1, we get 

ve(#~_lp2 _/*~p2) >_ re, i.e., # , - i  - / * .  mod f t .  

Subsequently, considering the r t h  row, (r - 1)st row, etc., of the same vector, 

shows tha t  

/*i = / * ~  mod t r '  if i > ~, 
/*r_gA =/*.a_~_ p mod g~' if r is odd, 

/*i = #i+lP 2 m o d e  ~' if i + 1 < ~. 

If t e ~ 2 divides a, then ( t , p+  1) = 1, and consideration of the first (or second) 

row of A-I(/*ICI,e + .- .  +/*~C~,e) shows that  

"re <_ve(#ip a +/*2pa(p - 1) + . . .  +/*ipt(i)+l (p - 1) + - . .  + #~p2) 

=Ve(/*lp 3 +/*2p 4) = ve(#tp a +Dlp  2) 

=ve(/*lpa (p + 1)) = re(~*1), 

i.e., /*: = 0 m o d  Ut .  

Hence, 

/'1 - / ' 2  - "'" =/*~ = 0 mod gr~. 

If g = 2 and g divides a, then v2(p + 1) = 1. To fix ideas, we may choose 

/ .1 , . . . , /*~ such tha t  

/*i =/*~ if i > ~, 

/*z_~ =/*~-tP-P if r is odd, 
r /*i ---- / * I + l P  2 if i + 1 < 3" 

Then  it is easy to check tha t  the third to (r + 1)st rows of the vector 

A-:( /*ICI,e  + " "  + #~C~,t) are all equal to 0. Condit ion (4) of Proposi t ion 1 

then implies tha t  the second row of A- : (# ICI , e  + " "  + #~C~,t) must be even. 

This  in tu rn  implies tha t  

v2(plp2(p + 1)) > r2 + 1, i.e., v2(#1) _> r2, i.e.,/.1 = 0 mod 2 "2. 

Hence, 

/'1 =-/*2 - "'" -=/*~ -= 0 mod 2 ~2. 

:n other  words, there is no relation among the Ci,~ if g is a prime divisor of a. 
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If  g r 2 is a pr ime divisor of b, then ve(p + 1) > re. We verify readily t ha t  all 

the conditions in Proposi t ion  1 are satisfied. 

If  g = 2 divides b, then  v2(p + 1) = r2 + 2, so the conditions of Propos i t ion  1 

are again satisfied. 

Therefore,  if g is a pr ime divisor of b, then  relations among  the Ci,e exist if 

and only if 

# i  -= # 2  - "'" - #~ m o d  ~ 

#1 - #2 - " '"  -- ~ - -#:{_~ -= " '"  - - # ~  m o d  i ~ 

Equivalently, we have the relations 

Cl,e + ' . - +  C~,e = 0 

Cl,e + . . .  + C ,e . . . . .  Cr,e = 0 

if r is even, 

if r is odd.  

if r is even, 

if r is odd. 

We conclude therefore t ha t  the pr ime- to-p  pa r t  C(p") (p) of C(p ~) has the group 

s t ructure  

(18) C(p") (p) ~_ ( Z / a Z )  r • (Z /bZ)  ~-1, r _~ 3. 

This  completes  the proof  of Theorem l(ii).  

4 .  A c t i o n  o f  A t k i n - L e h n e r  i n v o l u t i o n  

Let w = Wp~ be the Atk in -Lehner  involution on Jo(pr). Let C(pr) + and C(p~)p 

be as defined just  before Theorem 1. We prove Theorem 1(i) in this section. 

Since Ci = r - (Ppi) (1 < i < r) ,  we have 

wCi = r - (Pp~-,). 

W h e n  r = 3, we proved in subsection 3.2 t ha t  C(p3)p is genera ted by  C2,p. I t  is 

s t ra ight- forward to verify t ha t  

(w + 1)C2,p = 0 

using Propos i t ion  1. I t  follows therefore tha t  

c(p )p = c(p3); z/p2z. 

Now we assume r _> 4. 
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LEMMA 2: For p >_ 5 a prime and r >_ 4, we have 

c ( f ) , +  = (~,, ,  + w~, , ,  (2 _< i _< [3]r )), 
C ( f ) ;  = ( C , , , , C , , , - w - C , , ,  (2 _< i _< [ ~ ! ] ) > .  

Proo~ Since C ( f )  + is the image of (w + 1) on C ( f ) p  and C ( f ) p  is generated 

by Ci,p (2 < i < r - 1), we have 

(19) C(P') + = (Ci,v + wCi,~, (2 < i < r - 1)). 

However, Ci + wCi = C . - i  + wC,_i  clearly, so 

(20) Ci,p + wCi.v = C~-i,p + wC~-i,v. 

Since C~ = P1 - Pp., it follows immediately that  C~ + wC,  = O, i.e., C,,p E 

C ( f ) ~ .  Using this fact, we deduce from (13) that  

(21) C~-l ,p  + wC,-1 .p  �9 (Ci,p + wCi,p (2 < i < r - 2)). 

Combining (19), (20) and (21), we conclude that  

: (-Ci,p +w-Ci,p (2 ~ i__~ [ i ] )  ). c ( f )  + 

Similarly, we obtain 

C ( f ) ;  = (Ci,p - wCi,I, (2 < i < r - 1)). 

We note tha t  

c . _ i  - w C ~ _ ~  = - ( c ~  - wG) + 2r f- i))c. .  

It also follows from (13) that  

C~-l,p - wC~_l,p E (C,.,v, Ci,p - wCi,p (2 < i < r - 2)). 

Therefore, 

C(p~); : (-Cr,p,-Ci.,-w-Ci,p (2_<i_< [ i ] )  ). 

C~ - wC~ = r 

Hence we conclude that  

C(pr);  = (-Cr,,,-Ci.p- w-Ci,p (2 <_ i <_ [ ~ 2 1 ] )  ). 

It is routine to check the following: 

However, note that  when r is even, we have 
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�9 the order of C,,p + wCi,p (2 < i < [~]) is p r - ,  

�9 the order of C,.p - wC,,p (2 _< i < [ ~ ] )  is p~-', 

�9 there is no non-trivial relation among Ci,p + wCi,p (2 _< i < [~] ), 

�9 there is no non-trivial relation among "C,,p - w'C,,p (2 _< i < [ ~ ]  ). 

It then follows that 

C(p-)p+ ~ z / f - [ ~ l z  x . . . •  z / f - 3 z  x z / f - ~ z ,  
C(p~)~ ..._ Z / p r _ [ T }  z ~ - I  • �9 " X Z / p r - 2 z  • Z / p r - - l z .  

This completes the proof of Theorem l(i). 
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5. K e r n e l s  o f  degeneracy maps 

An important ingredient in our proof of Theorem 3 is Theorem 5, which we state 

and prove below. 

For 1 _< h <_ r - 1, let v l , v p , . . . , v f - h :  X o ( f )  ~ Xo(P h) be the degeneracy 

maps from Xo(p ~) to Xo(p h) defined in subsection 3.2. They induce, via Pic 

functoriality, the maps v~,. .  v* " Jo(P h) -4 J o ( f ) .  Let 7h,~ denote the map �9 ~ p r - - h .  

"~h,~ ~f v~ •  • ~;~_~: JoO, h) "-~+' ~ Jo( f ) .  

By passing to characteristic p, 7a,,. induces naturally a map on the component 

groups, which we also call "yh,~: 

"r~,~: (~p~)~-h+1 ___. ~ . . .  

THEOREM 5: Let p >_ 5 be a prime. Let 71,~ be the map 

"fl,r = V~ X ' ' "  X V;,'-I : r ~ (I)p"o 

Then the kernel of'h,~ is 

I/• J } �9 F x , = o  . 

Xr 
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Proof: Let E(p) denote the Shimura subgroup in 3o(p), and let U(p) denote the 

covering group of the maximal dtale subcover of the covering XI(p) --* Xo(p). It 

is well known that E(p) may be regarded as the Cartier dual of U(p) ([9], II.11). 

Let E(Fp) be defined by 

E(Fp) ~f Hom(V(p), #~(Fp)), 

where/~(Fp) denotes the group of ath roots of unity in Fp. It is known (cf. [9], 

[6]) that E(p) is of order a = ~ .  Hence, U(p) and Z(Fp) are also of order 

a .  

Recall that, when restricted to the prime-top torsion, the canonical reduction 

map 

(22) ~ :  ao(p~)(Q.) , Jo(ph),(rp) 

is injective. 

The degeneracy maps v~,...,v~._x: J0(P) ~ J0(P ~) are injective, and they 

coincide with one another on Z(p) ([6], Remark after Theorem 5). Together with 

(22), we see that these degeneracy maps induce injections V~/r,..., v~,.-x/F,: 
Z(Fp) ~ J0(p~)a(Fp), and these induced maps are identical. We therefore obtain 

the commutative diagram 

(23) 

E(Fp) x . . .  x E(Fp) " ' " .  J o ( p ' ) , ( F p )  

1 1 
Cp x . . .  x Cp ~*'" �9 ~p- .  

The horizontal maps are the obvious maps induced from (22), and the vertical 

maps come from the projection of the special fibre of the Ndron model onto the 

group of components. 

From [9], II Proposition 11.9, we know that u is an isomorphism. 

Since 

"y1,. = v ; / r ,  •  x v ; . - , / r . :  r . (F . ) "  - .  Yo(p ' ) . (Fp) ,  

and v~ir ,..., v;,_,ir" are identical on Z(Fp), together with (23) it follows that 

the kernel of "~I,~: ~[, ~ ~p- contains 

{(x) i } �9 . 

~r 
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On the other hand, v~: (I)p ~ (I)p~ is injective (cf. [5], w or [7], Lemma 4.1), 

so the image of (I)~ under 7],~ contains a subgroup of order a. 

By considering the cardinalities, it follows immediately that  the kernel of 

71,r: ~ ~ (I)p~ is precisely 

" E ~ 

Xr 

This completes the proof of Theorem 5. 

~ :i ---- 0 / �9 

| 

6. C o m p u t a t i o n  of  (I)p~ 

We shall prove Theorem 3 in this section. 

For p >_ 5 a prime, we recall that,  if f r 2, 3 is a prime, then the canonical 

reduction map 

C(ph)  , 

is surjective ([7], Theorem 2.3). 

If (f, pab) = 1, then C ( f ) t  is trivial according to Theorem 1. Since ~rr is 

surjective, we conclude that  

(24) ( r  is trivial if (~, pab) = 1. 

If~ divides b (and (~, 6) --= 1), then C ( f ) ~  '~ (Z/~vt(b)Z)~-l .  Since (I)f contains a 

copy of (Z/bZ) ~-1 ([7], Theorems 1.1(i) and 4.3), surjectivity of~r~ and cardinality 

consideration show that  

(25) (r ~_ (Z/F~t(b)z) ~-1 if (~,6) = 1, t divides b. 

If ~ divides a (and (/, 6) = 1), then C ( f ) l  "~ (Z/t~t(~)Z) ~ by Theorem 1. 

Consider the following commutative diagram: 

(26) 

C(p)  c(f)t 
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Recall that ([5], Theorem 2) the kernel of the map 71,~: Jo(P) ~ ~ Jo(P ~) is the 

group 

K = e r~(p)~ E X i  = O} . 

Since ~(p) N C(p) = C(p)[2] def {x E C(p): 2x = 0} ([9], II Proposition 11.11), 

and t # 2, the restriction 71,~: C(p)~ --* C(p~)e is therefore injective. Comparing 

cardinalities, we obtain the isomorphism 

(27) ")'l,r: C(P)~e ~-' C(P~)t. 

Surjectivity of r r  and 7r{, commutativity of (26), as well as the isomorphism (27), 

combine to show that any element of (r lies in the image of (r under 71,~. 

By Theorem 5, 

]((I)pr)e[ ~_< I,~l,r((Ci)p)s = tvt(a). 

On the other hand, (r contains a subgroup of order t-t(a) (cf. [5], subsection 

2.1, or [7], Lemma 4.1). Therefore we have 

(28) (q)p~)e -~ Z/gVda)Z if (e, 6) = 1, t divides a. 

Putting (24), (25) and (28) together, we obtain Theorem 3(i). 

Finally, we take l = p. I fp  - 11 mod 12, the surjectivity of r~ yields an upper 

bound for I(~p~)p[: 

pr-2 I"[ pr-t(i), r > 4, 
2<i<r 

I(r < p~, r = 3, 
1, r = 2 .  

These are equivalent to the bounds in the statement of Theorem 3(ii). 

This completes the proof of Theorem 3. 

7. M o r e  on  kernels  o f  d e g e n e r a c y  m a p s  

In this section, as a corollary of Theorem 3, we prove 

THEOREM 6: Let p > 5 be a prime, and let t # 2,3 be a prime divisor ofa .  

Then, for 1 < h < r - 1, the kernel of the map 

* * - h + l  7h,r = vl  •  • vp._~: (~p~)~ ' ( ~ p - ) l  
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l( xl ) } �9 e (r -~+~ ~ x , = 0  . 
Xr-h+l 

Remarks: (1) When h = 1 or 2, Theorem 6 holds also for ~ = 2, 3. This follows 

immediately from Theorem 5 and the isomorphism ((I)p)~ ~ ((I)p2)~. 

(2) When p ~ 11 mod 12, the same conclusion again holds for / = 2,3 (cf. [7], 

Theorem 1.1(ii)). 

COROLLARY : Let p >_ 5 be a prime. The kernel of the map 

is 

�9 �9 ( i ) r - 1  ~ (I)p- ~2,r  ~ V 1 X �9 �9 �9 X Vpr--2: p2 

{(bxl) } �9 6 ~ - 1  xi 6 ~v2 for all i, E bxi = 0 p2 

bXr- 1 

Proof." This follows immediately from Theorem 6, the first remark after Theorem 

6, the injectivity of 72,~ when restricted to the b-part of (I)~-1 ([7], Theorem 4.3), p2 

and the fact that ~p2 ~_ Z/abZ.  | 

Proof  of Theorem 6: Let ~ # 2, 3 be a prime dividing a. The degeneracy map 

v~ : Jo(p) ~ Jo(p h) induces an isomorphism 

* .  (r = 

Therefore, in order to determine the kernel of 

we consider the following commutative diagram: 

(,;)~-h§ 1 l~;•215 

Since the vertical map (v~) r-h+1 is an isomorphism, and the maps v~ , . . . ,  v~._~: 

((I)p)~ - ,  (r all coincide (cf. Section 4), it follows immediately that  the kernel 
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of 7h,r: (gSp~)~ -h+l  ---' (r is 

�9 E ((~ph)r~ -h+l 

Xr--h+l 
I  x, = o}. 

Isr. J. Math. 
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